
A matter of focus: monoaminergic modulation of stimulus coding
in mammalian sensory networks
LM Hurley�, DM Devilbiss and BD Waterhouse
Although the presence of neuromodulators in mammalian

sensory systems has been noted for some time, a groundswell

of evidence has now begun to document the scope of these

regulatory mechanisms in several sensory systems,

highlighting the importance of neuromodulation in shaping

feature extraction at all levels of neural processing. The

emergence of more sophisticated models of sensory encoding

and of the interaction between sensory and regulatory regions

of the brain will challenge sensory neurobiologists to further

incorporate a concept of sensory network function that is

contingent on neuromodulatory and behavioral state.
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Introduction
For sensory systems to guide behavior in adaptive ways,

they must focus selectively on stimuli that are most likely

to influence survival and reproduction. Coding and filter-

ing of sensory signals are accomplished by the tuning of

sensory receptors and by circuitry that uses classical

neurotransmitters in ascending or descending pathways.

Much evidence suggests that several intrinsic neuromo-

dulatory systems further impose dynamic filters, whose

properties are tied to environmental events or internal

state, upon sensory circuits. Just as occurs in motor

systems, endogenous neuromodulators transform sensory

circuits into pluripotent networks, whose outputs can be

fine-tuned to fit ever-changing behavioral circumstances.

A chemically diverse array of neuromodulators affect

sensory circuit function. Here we limit our focus to two

brainstem monoaminergic pathways and their respective
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neuromodulatory transmitters — norepinephrine (NE)

and serotonin (5-hydroxytryptamine or 5-HT) — in the

mature mammalian brain. Although other neuromodula-

tory substances have been shown to alter sensory proces-

sing, we focus on NE and 5HT because a great deal is

known regarding the sources, effects on sensory proces-

sing, and mechanisms of action of these two molecules. In

addition, aspects of the role of another important signal-

ling molecule within sensory systems, acetylcholine, have

recently been reviewed [1]. In mammals, both NE and 5-

HT are synthesized and released by clusters of brainstem

neurons that project broadly throughout cortical and

subcortical sensory structures [2,3]. Although there have

been many studies on the operation of NE and 5-HT in

specific mammalian sensory systems, there has been less

analysis of whether unifying principles of the neuromo-

dulatory actions of these agents apply across systems.

Here, we address this issue by asking three fundamental

questions. First, do these neuromodulators exert compar-

able effects on feature detection in different sensory

pathways? Second, are the mechanisms underlying their

neuromodulatory actions similar for different sensory

modalities? Third, are there common principles of action

by which these neuromodulatory systems regulate sen-

sory-dependent behaviors? Overall, we find support in the

literature for substantial similarities in the general ways

in which NE and 5-HT function across diverse sensory

networks.

NE, 5-HT and feature detection
The predominance of data suggests that, with several

exceptions, NE and 5-HT do not transmit detailed infor-

mation regarding sensory stimuli but rather alter the

responses of sensory circuits to sensory-driven inputs

[4,5]. In recent years, however, it has also become increas-

ingly clear that NE and 5-HT do not simply regulate

overall levels of activity in sensory pathways, but instead

actively shape the response properties of sensory networks.

The transformative nature of the effects of NE and 5-HT

on sensory responses is robust across cortical and sub-

cortical structures [6–12,13��], is evident with the use of

direct synaptic or naturalistic receptive field stimulation

[8,11,12,14�,15,16], is apparent in both in vitro and in vivo
preparations [8,15–19], and is prominent with either

direct drug application or the activation of intrinsic

NE- or 5-HT-containing efferent projection systems

[6,7,14�,18,19]. Thus, regulating sensory neuron respon-

siveness and selectivity to synaptic input is a character-
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istic and unifying feature of the effects of these neuro-

modulatory pathways across sensory modality.

Differences between the effects of NE and 5-HT have

not been examined on a wide scale under identical

experimental conditions. Although on their own NE

might facilitate and 5-HT might suppress neural

responses to other transmitters, there are many excep-

tions to these generalizations, and in some systems the

nature of monoaminergic modulatory effects is depen-

dent on neurotransmitter dose [10,11,15,19,20]. Below,

we describe the effects of NE and 5-HT on specific

aspects of stimulus coding (Table 1).

Differential targeting of input pathways

Patterns of neuromodulatory fiber innervation suggest,

and physiological experiments confirm, that NE and 5-

HT can change the functional balance of different

sources of input to single neurons, including ascending

versus descending inputs or feedforward versus feedback

signals, thereby reconfiguring the outputs of these sen-

sory networks [6,7,12,13��,21–28]. Several examples are

discussed in the following section on the mechanisms of

neuromodulatory effects.

Signal-to-noise ratio

The signal-to-noise ratio is measured as stimulus-evoked

spike train activity relative to spontaneous spike train

activity over a defined period of time, and is interpreted as

an index of the robustness of a neuron’s response to

sensory input. Both NE and 5-HT have been reported

to alter the signal-to-noise ratio in several sensory systems

[7,8,10,29–32]. For example, in visual cortex, norepi-

nephrine can increase the signal-to-noise ratio by decreas-

ing spontaneous activity and/or increasing evoked
Table 1

Selected examples of NE and 5HT-evoked changes in the response p

Response properties Modality Neuromodu

Signal:noise Somatosensory 5HT

Visual NE, 5HT

Olfactory NE

Auditory NE, 5HT

Gating Somatosensory NE

Visual NE

Olfactory NE

Selected inputs Somatosensory 5HT

Visual 5HT

Olfactory NE, 5HT

Auditory 5HT

Receptive field Somatosensory NE

Visual NE, 5HT

Auditory NE, 5HT
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activity, whereas serotonin can decrease the signal-to-

noise ratio by decreasing evoked activity proportionally

more than spontaneous activity [32]. However, whether a

neuromodulator increases or decreases the signal-to-noise

ratio may vary even from cell to cell within a single

preparation [9,19], and thus the significance of a change

in this parameter may depend on the specific roles of

individual neurons in the circuit under study.

Gating

The term ‘gating’ has been used in several ways in

sensory neurobiology (see [33], in this issue), but here

we use it to refer to an increase in responsiveness to

otherwise subthreshold and perithreshold stimuli, with or

without a corresponding increase in responsiveness to

suprathreshold stimuli. Thus, gating represents an exten-

sion of the dynamic range of neural responsiveness to

stimuli that were previously too weak to elicit a response.

This phenomenon is a commonly reported effect of NE

on neuronal responses to transmitter application, afferent

pathway electrical stimulation, or more natural forms of

receptive field stimulation [8,17,29,32], as exemplified by

the norepinephrine-induced increase in the responses of

olfactory mitral cells to perithreshold stimulation of the

olfactory nerve [8].

Receptive field structure

Because of their ability to modulate the efficacy of con-

vergent excitation and inhibition, both NE and 5-HT can

alter one of the most definitive characteristics of sensory

neurons — the receptive field. In response to NE or 5-HT,

receptive fields may be sharpened or blunted relative to

the basal discharge of the cell, or they may be shifted in

their borders because of selective effects of neuromodu-

lators on portions of the receptive field [5,9,11,20,32].
roperties of sensory neurons.

lator Preparation References

Rat cortex [30]

Rat cortex [32]

Rat olfactory bulb [8]

Bat inferior colliculus

Cochlear nucleus

[10,31]

Rat cortex [80]

Rat cortex [32]

Rat olfactory bulb [8,17]

Rat cortex [28]

Hamster superior colliculus [6,24]

Rat cortex

Rat cortex

Gerbil olfactory bulb

[7,23]

Bat, rat brainstem [22,25]

Rat cortex [81]

Rat, cat cortex [20,32]

Guinea pig cortex

Bat inferior colliculus

[9,11]
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Figure 1
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Examples of neuromodulator-evoked changes in receptive fields in

two different sensory modalities. (a) In addition to suppressing the

firing rate of a neuron in visual cortical area 17, norepinephrine (NE)

changes the range of stimulus velocities evoking the largest response.

Adapted with permission from [19]. (b) In the inferior colliculus, an

auditory midbrain nucleus, serotonin (5-HT) changes the range of

tone frequencies capable of eliciting a response from this neuron.

Adapted with permission from [10].
However, within this wide range of possibilities, most

effects of NE and 5-HT represent some type of refine-

ment of sensory receptive fields: there are relatively few

reports of receptive field expansion. Figure 1 illustrates

parallel neuromodulator-induced changes in receptive

field dimensions for visual and auditory neurons.

Distributed coding of sensory signals

Through changes at the single-cell level, NE and 5-HT

alter population codes, that is, information encoded in the

magnitude or pattern of the discharges of ensembles of

neurons. Such changes have been identified both by

recording simultaneously from ensembles of sensory neu-

rons and through modeling studies [12,34,35]. For exam-

ple, NE can induce changes in the relationship of the

firing patterns of single neurons to sensory stimuli, indi-

cating a reorganization of the functional ensemble that

encodes sensory information [12]. Although noradrener-
Current Opinion in Neurobiology 2004, 14:488–495
gic and serotonergic modulation of population codes is a

fairly recent conceptual advance, investigation of this

phenomenon will help to bridge the gap between the

effects of monoamines on neural codes and sensory-

related behaviors.

Temporal dynamics of responses

Sensory stimulus features may be represented by the

temporal properties of neuronal responses [36,37,38�].
Consequently, the timing of neural signals has an impor-

tant role in sensory-guided percepts such as surface

texture or the position of an object’s edge [39], movement

velocity across a sensory field [40] or stimulus frequency

[38�]. Recent data indicate that NE and 5-HT can alter

such temporal components of sensory neuron responses

[14�,31], as when activation of NE afferents to the piri-

form cortex alters the temporal organization of cortical

responses to olfactory stimulation [14].

Mechanisms underlying NE and 5-HT effects
Many of the effects of NE and 5-HT on feature extraction

by sensory circuits arise through a nested array of mechan-

isms that are evident at both the cellular and the circuit

level of organization (Figure 2). These are the same

mechanisms that have been so well documented in

reconfiguring the outputs of motor and other brain circuits

[41–43,44�]. Within a given sensory circuit, several dif-

ferent mechanisms may interact to influence signal pro-

cessing.

First, neurons within a circuit may differentially express

receptors for NE and 5-HT, in effect allowing these

agents to ‘target’ particular pre- or postsynaptic elements

of sensory circuits. Second, the receptor subtypes acti-

vated by NE and 5-HT and their expression by individual

neurons may also vary. The effects of NE are mediated by

two main families of metabotropic receptors, a and b [45].

Similarly, 5-HT receptors are found in seven main

families (5HT1 to 5HT7), all of which are metabotropic

except the ionotropic 5HT3 receptors [46].

Third, different subtypes of NE and 5-HT receptors are

ultimately coupled to a range of ion channel, and other,

effector molecules. Because differences in the comple-

ments of ion channels gives rise to vastly different mem-

brane properties among discrete populations of cells in

the same neural network [47,48], the observed actions of a

given neuromodulator are expected to vary markedly

across individual neurons. In this section, we briefly detail

examples of each of these three levels of neuromodula-

tory action and how they interact to influence feature

detection.

Targeting of individual circuit elements

In almost every sensory circuit examined, NE and 5-HT

affect different neurons in different ways (Figure 2a). For

example, in sensory cortices NE frequently has divergent
www.sciencedirect.com
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Figure 2
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Diagram illustrating a diversity of mechanisms through which neuromodulators may act on neural circuits. (a) Neuromodulators may function through

receptors (R) located on presynaptic versus postsynaptic neurons that are either on afferent pathways or that mediate local feedback. (b)

Neuromodulators may function through different receptor types (R1, R2, etc) that act through (c) divergent effector systems (E1, E2, etc). (d) Multiple

neuromodulators such as NE and 5-HT may also act on the same target neurons, as discussed in the Conclusions.
effects on neurons found in different layers, changing the

coding of features such as the signal-to-noise ratio or the

flow of afferent information [7,19]. In the olfactory bulb,

an NE-mediated decrease in the recurrent inhibition

from granule cells to mitral cells, a major output cell

type, has been proposed to underlie a gating effect of NE

on perithreshold stimuli [8,17].

Receptor identity

When combined with localization to pre- or postsynaptic

neurons, receptor identity is crucial in determining the

effect of a given neuromodulator (Figure 2b). For exam-

ple, in the superficial layers of the superior colliculus, 5-

HT causes a greater suppression of responses to inputs

from the retina than of responses to cortical inputs,

shifting the balance between ascending and descending

inputs to neurons in these layers. This shift results from a

decrease in retinotectal transmission mediated by 5HT1B

receptors that are selectively expressed by optic afferents,

although postsynaptic 5HT1A receptors may also med-

iate a decline in responsiveness [6].

Effector systems

The modulation of ion channel effectors by NE- and 5-

HT-activated signaling cascades, coupled with the resul-

tant changes in membrane potential, is an important

determinant of neuromodulatory effects (Figure 2c).

For example, NE-induced blockade of a calcium-acti-

vated potassium conductance in neocortex, hippocampus

and thalamus [49–51] prolongs evoked excitatory dis-

charge. It has been suggested that this effect, in conjunc-

tion with a membrane hyperpolarizing action of NE, can

enhance the signal-to-noise ratio of threshold level exci-

tatory synaptic responses [29,52].
www.sciencedirect.com
Combined effects

Alone, each of the above levels of neuromodulatory action

could have a significant impact on sensory circuitry.

Together, they combine to orchestrate fundamental shifts

in the outputs of these circuits and thus confer great

flexibility on their feature detection properties. For

instance, in heterogeneous populations of inhibitory cor-

tical interneurons, an experimental focus has been on

suppression of neuronal activity mediated by 5HT1A

receptors and facilitation of neuronal activity mediated

by 5HT2 and 5HT3 receptors [13��,28,53,54].

In visual cortex, 5-HT hyperpolarizes a specific type of

interneuron by acting on 5HT1A receptors and increasing

potassium current [13��]. At the same time, 5-HT depo-

larizes a subset of a second type of interneuron by

activating the ionotropic 5HT3 receptor, which carries

a nonspecific cation current. Given the different projec-

tion and firing patterns of these and other subgroups of

interneurons, it has been proposed that 5-HT functionally

reconfigures cortical sensory circuits in a way that reg-

ulates horizontal (intercolumnar) versus vertical (intraco-

lumnar) communication between pyramidal neurons

[13��,28,55]. Such multilevel interactions are likely to

be the rule for NE and 5-HT actions in sensory networks.

Impact of neuromodulatory systems on
behavior and perception
A converging range of studies suggests that noradrenergic

projections from locus coeruleus and serotonergic projec-

tions from raphe nuclei regulate signal processing in

sensory circuits according to behavioral state. Anatomical

studies have shown that both NE and 5-HT projections

arise from relatively few neurons that provide input via

extensive axonal collateralization to several sensory
Current Opinion in Neurobiology 2004, 14:488–495
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neuronal circuits throughout the neuraxis [2,22,44�,56–

59]. The increased discharge of locus coeruleus and dorsal

raphe neurons that parallels transitions between sleep,

waking and arousal, combined with transient changes in

discharge in response to sensory stimuli, suggests that

these pathways alter the levels of NE and 5-HT in

sensory terminal fields according to behavioral state or

in response to external events [41,44�,60]. Alterations in

synaptic transmission and cortical neuron responsiveness

do in fact occur with arousal or during behavioral tasks

that require sustained attention or vigilance [61–65,66��].
Moreover, the manipulation of neuromodulator efflux can

alter neural activity during sensory attention tasks [67,68].

As discussed above, more recent work suggests that,

because of the ability of NE and 5-HT to change neuronal

responsiveness to sensory stimuli, sensory neurons can

encode information more precisely or selectively from the

sensory surround. In doing so, neuromodulators may

shape sensory circuits to subserve specific behavioral

functions, just as NE, and to some extent 5-HT, does

within the olfactory bulb and piriform cortex to promote
Figure 3
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olfactory associative learning [69,70�]. For a given sensory

system, however, the exact subsets of NE and 5-HT

actions that give rise to increases in performance remain

to be elucidated.

Conclusions
In light of the complexity and specificity of the effects of

NE and 5-HT across sensory circuits, rather than formu-

late a blanket hypothesis for neuromodulator function in

sensory systems, we prefer to summarize this review in

terms that may spur inquiry. A unifying principle of the

actions of NE and 5-HT in sensory networks is that they

are much more nuanced and selective than a simple gain

control mechanism would be. Indeed, these agents both

modulate specific receptive field properties of individual

sensory neurons and alter population representations of

sensory stimuli. These generalities also apply to addi-

tional neuromodulators that we have not reviewed here,

including acetylcholine (for example, [1,71�]). Many find-

ings further relate the release of NE and 5-HT in sensory

networks to attentional state. Despite this evidence,

however, relatively few data link these potentially
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state-dependent neuromodulatory effects to specific

behaviors, with some notable exceptions [27,72,73]. For

example, a recent modeling study suggests that acetyl-

choline increases the discriminability of similar odorants

within the olfactory bulb, in parallel with behavioral

observations [71�]. Such studies underscore a clear need

for further research in vertebrates, although this line of

inquiry has long been a part of invertebrate studies

[74,75].

Another area that is largely unexplored is the potential for

interactions among multiple neuromodulatory substances

at the level of target neurons. Neurons containing NE and

5-HT colocalize with numerous peptides and other neu-

roactive substances that, on release, could influence

synaptic transmission in sensory circuits either alone or

in combination with the monoaminergic neuromodulators

[76,77]. Such interactions are likely to be essential to

shaping the response of a sensory system under different

behavioral contingencies.

Furthermore, it is well-established that NE- and 5-HT-

containing fibers target the same structures in sensory

networks, and that the output of noradrenergic locus

coeruleus and serotonergic dorsal raphe neurons fluctu-

ates across the sleep–wake cycle. The potential interplay

between these two monoamines in cells in co-innervated

terminal fields has, however, received relatively little

experimental attention [32,53]. Studies exploring the

physiological outcome of simultaneous application of

NE and 5-HT may help to define the potential impact

of dynamically fluctuating levels of these monoamines on

sensory circuit function and could contribute to identifying

differences or synergies in the roles of NE and 5-HT in

sensory processing (Figure 2, mechanism d, and Figure 3).

Determining additional mechanisms, such as circulating

hormone levels and circadian rhythms, that influence the

expression of monoaminergic receptors and the levels of

NE and 5-HT in terminal fields will also be integral to

elucidating the functions of NE and 5-HT in intact sensory

systems [78,79]. The expectation is that these types of

inquiry, as well as the continuation of work on the phy-

siological effects and mechanisms of NE and 5-HT action,

will not only form a more complete narrative on the

functions of neuromodulators in sensory systems, but also

forge strong links between this work and general models of

neuromodulator function and dysfunction in the brain.
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